# Living carbocationic polymerization

## XLVI. Living isobutylene polymerization induced by the common ion effect\*

#### Tibor Pernecker\*\* and Joseph P. Kennedy\*\*\*

Institute of Polymer Science, University of Akron, Akron, OH 44325-3909, USA

### I. Abstract

Conventional cationic polymerization can be converted into

living carbocationic polymerization (LC  $P_{ZR}$ ) by the introduction of common anion into the charge. Thus the conventional polymerization of isobutylene (IB) induced by the 2-chloro-

2,4,4-trimethylpentane (TMPCl)/TiCl<sub>4</sub> combination yields  $LC^{\bigoplus}$ Pzn of IB upon the addition of tetrabutyl ammonium chloride

(<u>n</u>-Bu<sub>4</sub>NCl), most likely due to the <u>n</u>-Bu<sub>4</sub>NCl + TiCl<sub>4</sub>  $\rightleftharpoons$  <u>n</u>-Bu<sub>4</sub>N<sup> $\Psi$ </sup>+

 $\Theta$ TiCl<sub>5</sub> equilibrium. A kinetic model has been developed and tested which corroborates these propositions. By this model we have gained for the first time quantitative insight into the quasiliving equilibrium.

#### II. <u>Introduction</u>

The Winstein spectrum, Figure 1 (1,2), is an important guide-post for the exploration of LC Pzn. The message conveyed by this spectrum of equilibria is that  $LC^{\bigoplus}$ Pzn's are due to low ionicity species congregating at the far left of the spectrum, whereas the highly ionic species on the right induce conventional (i.e., chain transfer- and termination-dominated) polymerizations (1).

A further heretofore unexplored/unexploited message of the spectrum is that by the introduction of common anions into a conventional cationic polymerization charge the equilibria

| ~ <u>C<sup>6⊕</sup></u> X <sup>6⊖</sup> | $ \begin{array}{c} {}^{k_{1}}_{\neq} & \sim \mathbb{C}^{\delta \oplus} \cdot \mathbb{X}^{\delta \Theta} \\ {}^{k_{-1}} & \end{array} $ | ${}^{\sim}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | ~C <sup>⊕</sup> /X <sup>Θ</sup> ≠ | $\sim C^{\Theta}//X^{\Theta} \cdots$ | $\cdot \approx \sim C^{\oplus} + \chi^{\Theta}$ |     |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|-------------------------------------------------|-----|
| POLAR<br>COVALENT<br>BOND<br>(DIPOLE)   | STRETCHED<br>(ACTIVATED)<br>POLARIZED<br>COVALENT<br>BOND                                                                              | CONTACT<br>ION PAIR                                                             | SOLVENT SEI<br>ION PAT            | PARATED<br>IRS                       | SOLVATED FI<br>IONS                             | REE |
|                                         | <u> </u>                                                                                                                               | ••                                                                              |                                   |                                      | ~                                               |     |
| DORMANT<br>SPECIES                      | LIVING CARBOC<br>POLYMERIZAT                                                                                                           | ATIONIC<br>ION                                                                  | CON<br>CARBO                      | VENTIONAL UNC<br>DCATIONIC POL       | CONTROLLED<br>YMERIZATIONS                      |     |
|                                         | kp +M<br>LIVING<br>PROP.                                                                                                               |                                                                                 |                                   |                                      |                                                 |     |
| Figure 1.                               | Fhe Winstein<br>species in ca                                                                                                          | spectrum<br>rbocatio                                                            | of ionio<br>nic polyr             | cities of<br>nerizatio               | f propagating<br>on                             |     |

<sup>\*</sup>For part XLV see J. E. Puskas, G. Kaszas, J. P. Kennedy, W. G. Hager: J. Polym. Sci., Part A, Polym. Chem., in press \*\*Visiting scientist, permanent address: Central Research Institute for Chemistry, Hungarian Academy of Sciences, P.O. Box 17, Budapest, Hugary

<sup>\*\*\*</sup> To whom offprint requests should be sent

could be displaced toward the left and thus the concentration of the species that lead to conventional polymerization could be eliminated; in other words the possibility exists to convert conventional cationic polymerization systems into living ones by the addition of common ions to the former. The preparative challenge is to find practical systems to prove this

proposition. Japanese authors obtained  $LC^{\bigoplus}$  Pzn of styrene by using the CH<sub>3</sub>SO<sub>3</sub>H/SnCl<sub>4</sub> initiating system in the presence of <u>n</u>-Bu<sub>4</sub>NCl (3). The effect of this salt has been attributed to the suppression of highly dissociated species (3,4).

This initial report on common ion effects in LC Pzn'sconcerns the first demonstration that a conventional isobutylene polymerization induced by the TMPCl/TiCl<sub>4</sub> combination can be readily converted into a LC Pzn by the addition of the common anion TiCl<sub>5</sub>. TiCl<sub>5</sub> is visualized to arise in <u>situ</u> by the introduction of <u>n</u>-Bu<sub>4</sub>NCl to the charge, i.e., by n-Bu<sub>4</sub>NCl + (excess) TiCl<sub>4</sub> - n-Bu<sub>4</sub>N + TiCl<sub>5</sub> (cationic olefin polymerization charges usually contain excess Friedel-Crafts acid in respect to the initiator).

#### III. Experimental

The synthesis of TMPCl (5) and the source and purity of the other chemicals used (TiCl<sub>4</sub>,  $CH_2Cl_2$ ,  $CH_3Cl$ , IB, hexanes) have been described (5,6,7). <u>n</u>-Bu<sub>4</sub>NCl (Tokyo Kasei) was used as received. General procedures and analytical techniques have also been described (3,4,5). Polymerizations were carried out at -80°C under a blanket of N<sub>2</sub> (dry box) using large (75 mL) culture tubes (total volume was 20 mL). The charges were thoroughly mixed prior to and during TiCl<sub>4</sub> addition. Both the AMI and diagnostic IMA techniques were employed (8). Polymerizations were quenched by prechilled methanol, the products were washed with methanol and dried to weight constancy at room temperature. Specific conditions, concentrations, etc., are given in the legends of Tables and Figures.

#### IV. <u>Results and Discussion</u>

IV.1. Living Polymerization in the Presence of n-Bu<sub>4</sub>NCl Table I shows the data obtained in a series of experiments in which IB polymerizations were induced by the TMPCl/TiCl<sub>4</sub> combination using methyl chloride/hexanes (60/40) mixed solvent at -80°C in the presence of various amounts of <u>n</u>-Bu<sub>4</sub>NCl. Both the AMI and IMA techniques were used (8). Figure 2 shows the corresponding  $\overline{M}_n$  versus  $W_p$  (g of PIB converted) plot, and the inset the N (number of moles of PIB formed i.e., g of PIB/ $\overline{M}_n$ ) versus  $W_p$  plot. Clearly, the  $\overline{M}_n$  versus  $W_p$  plot is rectilinear and starts at the origin, and the experimental points are close to the theoretical line constructed with I<sub>eff</sub> = 100%. This plot together with the horizontal N versus  $W_p$  plot (which indicates N<sub>0</sub> = [TMPCl]), demonstrate living polymerization.

A control experiment, i.e., the same charge under the same conditions specified in Table I, first series, except in the absence of <u>n</u>-Bu<sub>4</sub>NCl, gave ~100% conversion, ~30% I<sub>eff</sub> within less than a minute,  $M_n = 15,200$  and  $M_w/M_n = 2.4$  with GPC traces strongly skewed toward high molecular weights.

|         | M <sub>n</sub><br>(q/mole)        | $\overline{M}_w/\overline{M}_n$    | Wp<br>(q)               | Leff<br>(%) | N·104                      |             |
|---------|-----------------------------------|------------------------------------|-------------------------|-------------|----------------------------|-------------|
| 1**     | [ <u>n</u> -Bu <sub>4</sub> NC1   | ]=5.6.10"                          | <sup>4</sup> mole, IN   | 1A techni   | .que                       |             |
| 1.1     | 4950                              | 1.70                               | 1.390                   | 109         | 2.8                        |             |
| 1.2     | 4150                              | 1.90                               | 1.2104                  | 106         | 2.9                        |             |
| 1.3     | 15000                             | 1.55                               | 3.9270                  | 96          | 2.6                        |             |
| 1.4     | 16610                             | 1.60                               | 4.3370                  | 95          | 2.6                        |             |
| 2***    | [ <u>n</u> -Bu <sub>4</sub> NC1   | ]=1,64.10                          | <sup>-3</sup> mole, 1   | IMA techr   | ique                       |             |
| 2.1     | 2780                              | 1.46                               | 0.7014                  | 92.4        | 2.5                        |             |
| 2.2     | 6600                              | 1.54                               | 1.2883                  | 79.4        | 1.9                        |             |
| 2.3     | 8500                              | 1.48                               | 2.1782                  | 93.8        | 2.5                        |             |
| 2.4     | 10170                             | 1.46                               | 2.9150                  | 104.8       | 2.8                        |             |
| 2.5     | 11700                             | 1.50                               | 3.2974                  | 103.5       | 2.8                        |             |
| 3****   | * [ <u>n</u> -Bu <sub>4</sub> NCl | ]=1.58.10                          | <sup>-3</sup> mole, A   | MI techr    | nique                      |             |
| 3.1     | 3600                              | 1.29                               | 0.8756                  | 88.9        | 2.4                        |             |
| 3.2     | 4300                              | 1.21                               | 1.2582                  | 107.0       | 2.9                        |             |
| 3.3     | 4700                              | 1.20                               | 1.2386                  | 96.0        | 2.6                        |             |
| 3.4     | 4800                              | _1.16                              | 1.1672                  | 89.0        | 2.4                        |             |
| د<br>۲* | I <sub>eff</sub> =(g of           | PIB/M <sub>n</sub> c               | f PIB)/mol              | e of TMI    | PC1                        |             |
|         | [TMPC1]=2.<br>mole                | /•TO * MC                          | oie, [TiCl <sub>4</sub> | j=3.7·10    | " mole,[IB]=0.             | 0234        |
| ***     | [TMPC1]=2.<br>mole. in C          | 6·10 <sup>~4</sup> mc<br>HaCl/Hex. | le, [TiCl4<br>(60/40).  | ]=3.7·10    | <sup>-4</sup> mole,[IB]=0. | 0117<br>mes |

TABLE I. LC  $P_{Zn}$  of IB in the presence of <u>n</u>-Bu<sub>4</sub>NCl

mole, in CH<sub>3</sub>Cl/Hex. (60/40), 1 ml IB/8 min., five times
\*\*\*\*
[TMPCl]=2.7·10<sup>-4</sup> mole, [TiCl<sub>4</sub>]=3.7·10<sup>-4</sup> mole, [IB]=0.0234
mole in CH<sub>3</sub>Cl/Hex. (60/40), 1,5,8,10 minutes

TABLE II. Influence of <u>n</u>-Bu<sub>4</sub>NCl concentration on rate of propagation. ([TMPCl]= $2.7 \cdot 10^{-4}$  mole, [TiCl<sub>4</sub>]= $3.7 \cdot 10^{-3}$  mole, [IB]=0.013 mole, CH<sub>2</sub>Cl<sub>2</sub>/Hex., 60/40, -80°)

|    | Wp     | Conv.       | Time  | $n-Bu_4 NCl \cdot 10^3$ | -ln(1-conv) |
|----|--------|-------------|-------|-------------------------|-------------|
|    | (d) –  | (%)         | (sec) | (mole)                  | . ,         |
| 1  | 0.1008 | 14          | 20    | 1.85                    | 0.151       |
| 2  | 0.1512 | 21          | 40    |                         | 0.236       |
| 3  | 0.2232 | 31          | 60    |                         | 0.371       |
| 4  | 0.5473 | 77          | 240   |                         | 1.464       |
| 5  | 0.6244 | 87          | 420   |                         | 2.025       |
| 6  | 0.1440 | 20          | 20    | 0.62                    | 0.220       |
| 7  | 0.1872 | 26          | 40    |                         | 0.301       |
| 8  | 0.2736 | 38          | 60    |                         | 0.478       |
| 9  | 0.6986 | . 97        | 240   |                         | 3.506       |
| 10 | 0.7217 | ~100        | 420   |                         |             |
| 11 | 0.1945 | 27          | 20    | 0.30                    | 0.314       |
| 12 | 0.2304 | 32          | 40    |                         | 0.385       |
| 13 | 0.4105 | 57          | 60    |                         | 0.843       |
| 14 | 0.7198 | ∼100        | 240   |                         |             |
| 15 | 0.7210 | <u>~100</u> | 420   |                         |             |
| 16 | 0.2161 | 30          | 20    | 0.15                    | 0.356       |
| 17 | 0.3457 | 48          | 40    |                         | 0.653       |
| 18 | 0.5185 | 72          | 60    |                         | 1.273       |
| 19 | 0.7019 | 97          | 240   |                         | 3.650       |
| 20 | 0.7213 | ~100        | 420   |                         |             |
| 21 | 0.2521 | 35          | 20    | 0.062                   | 0.431       |
| 22 | 0.5330 | 74          | 40    |                         | 1.347       |
| 23 | 0.6698 | 93          | 60    |                         | 2.670       |
| 24 | 0.7204 | ~100        | 240   |                         |             |
| 25 | 0.7198 | ≈100        | 420   |                         |             |

IV.2. The Influence of n-Bu<sub>4</sub>NCl Concentration on the Rate of Propagation in Living IB Polymerization: A Kinetic Model and Analysis

As suggested by the Winstein spectrum, carbocationic polymerizations (including living and conventional systems) may be visualized to proceed by a combination of three fundamental species: a covalent dormant species, a living species in which the critical "living" bond is stretched, and a set of more or less dissociated ion pairs, which yield conventional polymerization. Just as the dissociated ionic species are represented as a set of species, (see Figure 1), the undissoc-iated species may also be imagined to consist of a set of contributing species. In the presence of a Friedel-Crafts acid  $(MtX_n)$  the simplified Winstein spectrum (in which all propagating ion pairs are symbolized by  $\sim C + MtX_{n+1}^{\Theta}$ ) becomes:

$$\sim c-x + Mtx_{n} \frac{k_{1}}{k_{-1}} \sim c^{\Theta} \delta^{\Theta} \delta^{\Theta} \frac{k_{2}}{k_{-2}} \sim c^{\Theta} + Mtx_{n+1}^{\Theta}$$

$$(+M) k_{pL} (+M) k_{pC}^{\Theta}$$

where the curved arrows symbolize living and conventional propagation characterized by the rate constants  $k_{pL}$  and  $k_{pC} \Phi$ . The equilibria between the three fundamental species are governed by the equilibrium constants  $K_1 = k_1 / k_{-1}$  and  $K_2 = k_2 / k_{-2}$ . The first, so-called quasiliving, equilibrium that exist between dormant and living species has been discussed in detail (9). Specifically, for the TMPCl/TiCl<sub>4</sub>/IB system:

According to this model, the addition of n-Bu4 NCl to the system which contains excess TiCl<sub>4</sub> (2) will produce the common ion TiCl5, which by mass law action, will virtually eliminate the dissociated ion pairs of the equilibrium and push the equilibria toward the left. Thus in the presence of added common ion TiCl<sub>5</sub> (i.e.  $MtX_{n+1}^{\Theta}$ ), the simplified Winstein spectrum will contain only one equilibrium between the dormant and living species, and the concentration of the living species will decrease in proportion with the concentration of the common ion:

$$\sim c - x + Mtx_{n} \frac{k_{1}}{k_{-1}} \sim c - - x \cdot Mtx_{n} + Mtx_{n+1}^{\Theta}$$

where  $[MtX_n] = [MtX_n]_o - [MtX_{n+1}]$ , i.e. the original Friedel-Crafts acid concentration will decrease in proportion to the common ion added.

The overall rate of propagation

$$-\frac{d[M]}{dt} = k_{pL}[\sim C - - x \cdot MtX_n] \cdot [M] = k_p^A[M]$$
(1)

where the apparent rate constant of propagation  $k_p^A = \delta \Theta$ 

 $k_{pL}$ [~C---X·MtX<sub>n</sub>] can be experimentally determined. Obviously, the amount of the initiator that has entered the Winstein spectrum is equal to that originally introduced into the charge [I]<sub>0</sub> minus the unused portion [I]:

$$\delta \Phi \qquad \delta \Theta$$

$$[I]_{0} - [I] = [\sim C - X] + [\sim C - - X \cdot MtX] \qquad (2)$$

and

$$K_{1} = \frac{k_{1}}{k_{-1}} = \frac{\delta \Theta \quad \delta \Theta}{[\sim C - -X \cdot MtX_{n}] \cdot [MtX_{n+1}]} \qquad (3)$$

Thus

and

$$k_{p}^{A} = k_{pL} \frac{[I]_{o}^{-[I]}}{1 + [MtX_{n+1}]/(K_{1}[MtX_{n}])}$$
 (5)

or

$$\frac{[I]_{o} - [I]}{k_{p}^{A}} = \frac{1}{k_{pL}} + \frac{1}{k_{pL} \cdot K_{1}} \cdot \frac{[Mtx_{n+1}^{\Theta}]}{[Mtx_{n}]}$$
(6)

$$\frac{[I]_{o}^{-[I]}}{k_{p}^{A}} = \frac{1}{k_{pL}} + \frac{1}{k_{pL} \cdot K_{1} [MtX_{n}]_{o}} \cdot \frac{[MtX_{n+1}^{\Theta}]}{1 - [MtX_{n+1}]/[MtX_{n}]_{o}}$$
(7)

This equation can be analyzed graphically by determining  $k_p^A$  (obtainable from conversion vs. time experiments) as a function of different  $[MtX_{n+1}^{\Theta}]$ . Thus a series of experiments were carried out to test this model in the TMPCl/TiCl<sub>4</sub>/IB system and to express quantitatively the common ion effect by the addition of various concentrations of <u>n</u>-Bu<sub>4</sub>NCl to the charge (it is assumed that the <u>n</u>-Bu<sub>4</sub>NCl + excess TiCl<sub>4</sub> reaction is quantitative and that the product is completely dissociated, that is: [<u>n</u>-Bu<sub>4</sub>NCl] = [MtX\_{n+1}]).





Results are summarized in Table II. Figure 3 shows conversion vs. time plots and Figure 4 the corresponding first order plot together with the  $k_p^A$  values. Evidently by increasing the concentration of the common ion (i.e.,  $[Mtx_{n+1}^{\Theta}]$ ) the rate of polymerization decreases proportionately.

On hand of the  $k_p^A$  data we are able to substantiate our model expressed by eq.(7). Figure 5 shows the  $[I]_0 - [I]/k_{p}^{A}$  vs.  $[Mtx_{n+1}^{\Theta}]/(1-[Mtx_{n+1}^{\Theta}]/[Mtx_n]_{o})$  plot. Gratifyingly the plot is rectilinear yielding  $k_{\rm pL} \sim 3~{\rm sec^{-1}}~{\rm (mole/L)^{-1}}$  and  $K_1 = 5.5\cdot 10^{-2}$ from the intercept and slope, respectively. The linearity of this plot is strong evidence for the existence of the quasiliving equilibrium and for the common ion effect in the  $LC^{\bigoplus}$ Pzn of IB. In this manner we have for the first time gained quantitative insight into the dormant ≠ living, i.e., so-called quasiliving, equilibrium.

Acknowledgements. This material is based upon work supported by the NSF (Grant DMR-89-20826). Initial discussions with Dr. B. Iván and follow-up detailed reviewing by Professor T. Kelen are gratefully acknowledged.

<u>References</u>

- J. P. Kennedy and E. Maréchal, Carbocationic Polymerization, 1. John Wiley & Sons, New York, 1982
- 2. J. P. Kennedy and B. Iván, Designed Polymers by Carbocationic Macromolecular Engineering: Theory and Practice, Hanser Pub., (Munich), 1991
- Y. Ishihama, M. Sawamoto, T. Higashimura, Polym. Bull. 24, з. 201 (1990)
- T. Higashimura, O. Kishiro, J. Polym. Sci., Polym. Chem. 4. Ed., <u>12</u>, 967 (1974)
- J. P. Kennedy and R. A. Smith, J. Polym. Sci., Polym. Chem. 5. Ed., <u>18(5)</u>, 1523 (1980)
- J. Puskas, G. Kaszas, J. P. Kennedy, T. Kelen, F. Tüdős,
  J. Macromol. Sci., <u>A18(9)</u>, 1229 (1982-83)
  G. Kaszas, M. Győr and J. P. Kennedy, J. Macromol. Sci., 6.
- 7. <u>A18(9)</u>. 1367 (1982-83)
- R. Faust and J. P. Kennedy, J. Polym. Sci. Part A: Polym. 8. Chem., A(25), 1847 (1987)
- J. P. Kennedy, T. Kelen, F. Tüdös, J. Macromol. Sci.-Chem., 9. A18(9), 1189 (1982-83)

Accepted May 2, 1991 Κ